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ABSTRACT
Aetla

The horizontal distance A(x) 7%1(11(:()) - x has been shown by Doksum

(1974) to be a useful measure of the difference, at each x, between the

populations defined by continuous distribution functions F(x) and G(x). =

Here we assume that G is known, and we develop a Bayesian nonparametric

estimator Xn(x) of A(x) based on a random sample of n X's from F. The

estimator Xn is, for weighted squared-error loss, Bayes with respect to

Ferguson's (1973) Dirichlet process prior. Using a result of Korwar and

Hollander (1976), the Bayes risk of Xn is evaluated for the case when G is

uniform.

Agcession For

NTIS GRALIL
DDC TAB

Unannounced
Justification_ ______ _

By

Distribut.} on/

&vailedt 2ty Codes
Availand/or
Dist. special

A

AIR FORCE CFFICE CF SOIERTIFIC BESEARCH (AFSC)
NOTICE OF Dnalsdimillnii S

This teahu v TUy ceel. raviewed and 18
approved i.r villoo voioite LA A¥R 190-12 (7b).
Distributicn is uulimited.

A. D. BLOSE

Tecbnioal Information Officer

S N U PR




1. Introduction.

When F and G are continuous distribution functions, the horizontal
distance

A(x) = G'l(F(x)) - X, X real,

¢))
has been shown by Doksum (1974) to be a useful measure of the difference,
at each x, between F and G. Under suitable regularity, Doksum shows that
A(x) is essentially the only function satisfying
d
X+a(X) =Y, (2)

where, in (2), X is distributed according to F, Y is distributed according to
G, and s means ""has the same distribution as."

When the linear model

F(x) = G(x + 4), for all x,

(3)
holds, where A is a constant, then A(x) = A (and, of course, when F = G,
A(x) = 0.)
When one observes a random sample of n X's from F and an independent
random sample of m Y's from G, Doksum suggests estimating A(x) by
- -1
&) = G (F (X)) - x, (4)

where N=m + n and F » G, are the empirical distribution functions based on

the X's and Y's, respectively. Doksum also derives a simultaneous confidence

band for A(x) and shows that N!’{ ZN(x) - A(x)} converges weakly to a Gaussian
process.
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In this paper we consider the one-sample problem where ¢ ie knowm and
(just) a random sample of n X's from F is available for estimating a(x).
One natural estimator for this problem is the one-sample limit (m + =) of

Doksum's estimator 3. This one-sample limit is
A0 = 6HE () - x. s)

The estimator & does not utilize prior information about the unknown F. Our
approach is Bayesian and leads to an estimator Xn which does use pricr information
abaut F.

POV PO

We assume that F is a rendom distribution function chosen according to
Ferguson's (1973) Dirichlet process prior (Definition 2.2) with parameter a(:),
a completely specified measure on the real line R with the Borel o-field B. A
A defect to this approach is that the randomly chosen F will not be continuous
(Ferguson's Dirichlet process prior chooses, with probability one, a discrete
distribution) and thus the desirability of estimating A(x) is slightly

diminished. Nevertheless, in this case A(Xx) remains a useful measure of the

distance between F and G at x, and the resulting estimator Kn(x) combines
sample information and prior information in an effective manner.

Qur loss function is

L@, 8) = [(A(x) - a(x))ZaW), (6)

where A is an estimator of A and W is a finite measure on (R, B). A general
expression for the Bayes estimator Xn is given in Section 3, and explicit
expressions for Kn are obtained for the cases when G is (i) exponential and

(ii) uniform. Furthermore, in th& uniforn case we derive the Eayes risk of Xn.

Section 2 contains preliminaries relating to the Dirichlet process.




2. Dirichlet Process Preliminaries.

This section briefly gives some definitions and theorems associated with
the Dirichlet process. For further details the reader is refered to

Ferguson (1973).

DEFINITION 2.1 (Ferguson). Let Z be independent random

1 ’ LN ] ’ Zk
variables with Z 3 having a gamma distribution with shape parameter o 20 and

scale parameter 1, j =1, ..., k. Let oy > 0 for some j. The Dirichlet

distribution with parameter (al, vy uk), denoted by D(al, k’ uk), is

defined as the distribution of (Y;, ..., Y}), where YJ. =7 j/.z Z
). i=]

i’ j = 1, e ey ko
Since J Y; = 1, the Dirichlet distribution is singular with respect

i=1 -
to Lebesgue measure in k-dii.cncionazlspace. If o = (0, the corresponding Yj

is degenerate at zero. If however “j > 0 for all j, the (k - 1)-dimensional

distribution of (Y,, ..., Yk-l) is absolutely continuous with density

f(y1, seey yk'llal’ LN (lk) (7)
F(a, + .o + ak) k-1 a.-1 k-1 o, -1
1 j k
- (ny.? A= 1 ¥:) " I0qs «oes Yy q)
ﬂul, e ﬂuki j=1 3 j=1 J 5v1 k-1
k-1
where S is the simplex S = {(y;, ..+ ¥ 1): y; 2 0, .21 Yj 1}.
J’

DEFINITION 2.2 (Ferguson). Let (X, 4) be a measurable space. Let a be a
non-nmull finite measure (nonnegative and finitely additive) on (X, 4). We say
P is a Dirichlet process on (X, A) with parameter o if for every k= 1, 2, ...,
and measurable partition (B,, ..., Bk) of x,\ the distribution of
(P(Bl), coes P(Bk)) is Dirichlet with parameter (a(B,), ..., a(Bk)).
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DEFINITION 2.3 (Ferguson). The Xx-valued random variables xl, coey xn
constitute a sample of stze n from a Dirichlet procese P on (X, A) with
parameter a if for any m = 1, 2, ... and measurable sets AL ...,nAm, Cl’ coey Cn’
AX; e Cyy ooes X € Can(Al), oo PAAD), P(Cl), cenry P(Cn)} = il-ll P(C.l) a.S.,
where Q denotes probability.

THEOREM 2.4 (Ferguson). Let P be a Dirichlet process on (X, A) with
parameter o, and let X1, s Xn be a sample of siae n from P. Then the
conditional distributioon of P given Xl’ ceey Xn i8 q Dirichlet process on

n
(X, A) with parameter 8 = a + | & , where, for X e X, Aca, 6 (A =17if
i=l i

X e A, 0 otheruwise.




3. A Bayes Estimator of the Horizontal Distance.

We suppose that F is chosen according to a Dirichlet process prior on
(R, B) with parameter a. With the loss function given by (6), the Bayes j
estimator for the no-sample problem is found by minimizing the right-hand-side '
of (8),

B, 8) = [EQ() - A(x))%dW(x), (8)

where the expectation is with respect to F. The estimator is obtained by 4

minimizing EQX(x) - 4(x))? for each x, yielding

¥(x) = Ea(x)) = BG R} - x. ©)

We next evaluate (9) in the cases where (i) G is exponential and (ii) G is

uniform.

3.1. The Case Where G is Exponential: Let G(x) =1 - exp(-ax), x > 0,

and 0 for x < 0, for some A > 0. Then

¢ lxy = a7t

an(l - x), 0 <x<1,
and (9) reduces to

'1 1 4
¥x) = (B(a', 8")}7} {)[-A'lm(l -yt la - pfly - x. Qo)

wnere B(a', B8') = I'(a")P(g')/T(a’' + 8'). Equation (10) makes use of the fact
that for each x, F(x) is distributed according to the Beta distribution with

parameters a' = a((-», xJ), 8' = a(R) - a'. (To see this use Definition 2.2

with the measurable partition B1 = (-», x], B2 =R - Bl.) Thus, for the
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‘no-sample’’ problem, by expanding n(l - y) in a power series, we obtain

. - l = - i ',
0BG, 8937L I ya'ilg -y lay
J=

()

- ,ZlfB(a' + 3, 8")/{jB(a’', B")}] - x.
J=

Using Theorem 2.4, the Bayes estimator when a sample X

available from F, is

2o =2t 1 [B@'" + 5, 8')/(BG, 810YT - x,
j=

where

n
a'' = a((-=, x1) + ] 5’( ((-=, x1D),
i=1 %4

B'' =a(® *+n-a'.

3.2. The Case Where G is Uniform: Let G(x) = 0 for x < a, (x - a)/(b - a)

forasx<sb, and 1 for x > b, for some a < b. Then (9) reduces to

1 ' 1
¥ = [iy® - a) + aXB@', 80 1a - B ey
0

=a+ (b -a)B('+1, 8')/B(a', 8")} -Xx

a+ (b-a)a'/(a'+8")} -x

a+ (b - a)FO(x) - X,

Fo(x) - G((-“, XJ)/G(R)) X ¢ R,

can be interpreted as the 'prior guess'' at F.

- X

1’ e

i
,an

(11)
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Thus, from Theorem 2.4, when a sample xl, cees xn is available from F,

the Bayes estimator is
Xn(x) =a+ (b - a)?n(x) - X, X€R, 12)

where

n
F 00 = (a((=, xD) + ]

6. ((-», x1)}/{a(R) + n}.
i=1l i

1

The minimum Bayes risk S{a) of 'Kn(IZ) can be computed using results of
Korwar and Hollander (1976). Korwar and Hollander obtained the minimum Bayes

risk R(a) of the estimator %n against weighted squared error loss to be

R(a) = [a(®)/{(a(R) + 1)(a(®) + n)}IfFy(x) (A - F{fx))di(x).

(See equation (2.19) of Hollander and Korwar (1976) and replace the m of
that equation with n here.) It immediately follows that S(a) = (b - a) 2R(m).
We note that we can also directly obtain the risk T(a) (say) of th: on: zai;le
limit of Doksum's estimator an (see equation (5)) with respect to the
Dirichlet process prior with parameter o in this case when G is uniform.

We find
Kn(x) =a+ (b-aF (X -xxeB&,

where Fn(x) is the empirical distribution function of the X's. Using (3.3)

of Korwar and Hollander (1976) we obtain T(a) = (b - a)2(1 + a(®)/m)R(a).
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